Maximizing the Number of Nonnegative Subsets
نویسندگان
چکیده
Given a set of n real numbers, if the sum of the elements of every subset of size larger than k is negative, what is the maximum number of subsets of nonnegative sum? In this note we show that the answer is (n−1 k−1 ) + (n−1 k−2 ) + · · ·+ (n−1 0 ) + 1, settling a problem of Tsukerman. We provide two proofs; the first establishes and applies a weighted version of Hall’s theorem, and the second is based on an extension of the nonuniform Erdős–Ko–Rado theorem.
منابع مشابه
Nonnegative signed total Roman domination in graphs
Let $G$ be a finite and simple graph with vertex set $V(G)$. A nonnegative signed total Roman dominating function (NNSTRDF) on a graph $G$ is a function $f:V(G)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N(v)}f(x)ge 0$ for each $vin V(G)$, where $N(v)$ is the open neighborhood of $v$, and (ii) every vertex $u$ for which $f(u...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملOn the existence of nonnegative solutions for a class of fractional boundary value problems
In this paper, we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation. By applying Kranoselskii`s fixed--point theorem in a cone, first we prove the existence of solutions of an auxiliary BVP formulated by truncating the response function. Then the Arzela--Ascoli theorem is used to take $C^1$ ...
متن کاملMaximizing the number of independent subsets over trees with bounded degree
The number of independent vertex subsets is a graph parameter that is, apart from its purely mathematical importance, of interest in mathematical chemistry. In particular, the problem of maximizing or minimizing the number of independent vertex subsets within a given class of graphs has already been investigated by many authors. In view of the applications of this graph parameter, trees of rest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 28 شماره
صفحات -
تاریخ انتشار 2014