Maximizing the Number of Nonnegative Subsets

نویسندگان

  • Noga Alon
  • Harout K. Aydinian
  • Hao Huang
چکیده

Given a set of n real numbers, if the sum of the elements of every subset of size larger than k is negative, what is the maximum number of subsets of nonnegative sum? In this note we show that the answer is (n−1 k−1 ) + (n−1 k−2 ) + · · ·+ (n−1 0 ) + 1, settling a problem of Tsukerman. We provide two proofs; the first establishes and applies a weighted version of Hall’s theorem, and the second is based on an extension of the nonuniform Erdős–Ko–Rado theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonnegative signed total Roman domination in graphs

‎Let $G$ be a finite and simple graph with vertex set $V(G)$‎. ‎A nonnegative signed total Roman dominating function (NNSTRDF) on a‎ ‎graph $G$ is a function $f:V(G)rightarrow{-1‎, ‎1‎, ‎2}$ satisfying the conditions‎‎that (i) $sum_{xin N(v)}f(x)ge 0$ for each‎ ‎$vin V(G)$‎, ‎where $N(v)$ is the open neighborhood of $v$‎, ‎and (ii) every vertex $u$ for which‎ ‎$f(u...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

On the existence of nonnegative solutions for a class of fractional boundary value problems

‎In this paper‎, ‎we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation‎. ‎By applying Kranoselskii`s fixed--point theorem in a cone‎, ‎first we prove the existence of solutions of an auxiliary BVP formulated by truncating the response function‎. ‎Then the Arzela--Ascoli theorem is used to take $C^1$ ...

متن کامل

Maximizing the number of independent subsets over trees with bounded degree

The number of independent vertex subsets is a graph parameter that is, apart from its purely mathematical importance, of interest in mathematical chemistry. In particular, the problem of maximizing or minimizing the number of independent vertex subsets within a given class of graphs has already been investigated by many authors. In view of the applications of this graph parameter, trees of rest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2014